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velocity measurements in the alkali metal 
show a larger spread of values than is usual in 
metals, presumably because of the difficulty 
in measuring shear wave velocities near the 
melting temperature of a metal (see I for 
reference to sonic data). This problem is 
particularly severe for Rb in which shear 
wave have only been measured below 200°K. 
The shock data listed is obtained in the usual 
way [2] from a linear fit to shock velocity 
measurements. 

For Na and K there is an acceptable, if 
somewhat poorer, agreement between sonic 
and shock moduli in view of the spread of 
the sonic data for N a. The static moduli 
reported in I are also consistent. In Li there 
is a larger discrepancy between shock and 
sonic data and a comparable spread between 
the shock data listed and two other available 
sets of shock wave data [6]. However, because 
of the smallness of the thermal corrections 
and the larger uncertainty in this low pressure 
data on Li, we shall not attempt to resolve 
these discrepancies. A much larger discrep
ancy exists between the extrapolation 
adiabatic modulus of Rb from shock data and 
the statically measured value. The sonic 
values extrapolated from low temperature 
data also indicate that the shock modulus is 
too small. In as much as the static modulus 
was measured to be the same in two very 
different static apparati in I, and is the only 
one of the three types directly measured, 
we must assume the static modulus to be 
correct. The larger disagreements between 
various measured values of the pressure 
derivatives of the bulk modulus, the B' in 
Table 1, are typical of the differences for 
normal metals [2]. 

The implication of the Rb discrepancy is 
that the extrapolation of shock data to zero 
pressure is incorrect in this case. The lowest 
shock data points for Rb which are shown 
in Fig. 1 also appear to deviate system
atically from the single linear fit which is 
made to the entire range of the Rb shock data. 
For this reason, the initial compressibility 

data of I has been transformed into the shock
particle velocity plane (i.e., the Us - Up plane) 
and is shown together with shock data points 
in Fig. 2. A best fit to this data is clearly a 
non-linear Us - Up relation. It would be 
desirable to confirm this non-linearity by 
further shock velocity measurements at low 
pressure. 

The upward curvature of the Us - Up 
relation is only observed for metals in which 
there is a presumed change in electronic band 
structure. These effects have been discussed 
by Royce [7] as well as in [4J. In the latter 
reference, the authors actually included Rb in 
their collection of metals exhibiting electronic 
phase changes along the Hugoniot on the basis 
of an indication of a small amount of curvature 
in the original Us - Up data on Rb. 

3. DETERMINATION OF GRUNEISEN Yc;, 
FROM COMPRESSION DATA 

By a simple subtraction at fixed volume it is 
possible to obtain an approximate average 
Gruneisen coefficient, 'YG between the 
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Fig. 2. Compression data in the shock velocity U
particle velocity Up plane for Rb. x-individual shock 
points and fit from Ref.[5). V-G-K-fits to static data 

from I. 



2542 R. GROVER 

Hugoniot and the static isotherm. The 
average Yc is determined from Hugoniot and 
isothermal pressures, PH and PTo, and internal 
energies, EH and ETo according to 

PH(V) and EH(V) can be calculated directly 
from measured shock velocities by standard 
conservation equations. ETo (V) can be cal
culated from PTo(V) if the Mie-Gruneisen 
equation-of-state is assumed for the solid. 

fl'o fVO dV 
ETo(V) = v Po(V)dV- 3RTo v 'Yc(V)V' 

(2) 

In principle 'Yc( V) can be calculated from 
compressibility data in the solid phase by an 
iterative solution of equations (2) and (1). 
However, at larger compressions the contribu
tion of the second term in the right hand side 
of (2) becomes small and the solution is 
considerably simplified by making an approx-

imate guess for 'Yc( V) in the integral. On the 
other hand at small compressions equations 
(1) and (2) are equivalent to determining 'Yc(V) 
from the difference between the initial 
adiabatic and isothermal bulk moduli. Clearly 
the moduli in Table 1 are not sufficiently 
reliable. For this reason we have used, as a 
first guess, a 'Yc equal to its initial value 
(see Table 1) in equation (2) in order to 
calculate a 'Yc at maximum compression from 
equation (1). A constant 'Y equal to the average 
of these two was then used in (2) to evaluate 
the final 'Yc(V) by equation (1). The resulting 
'Yc(V) for Na and K over a restricted range of 
high densities is shown in Fig. 3. For Rb the 
necessary shock data below 45 kbar is 
unavailable as mgued above. Therefore, 
a calculation of 'Yc at the lowest shock points 
around 54 kbar (see Fig. 1) was done ignoring 
the second term of equation (2) giving a 'Yc -
0·25. The uncertainty even at large compres
sion in the calculated 'Yc for Na and K are 
large, - ± 20 per cent, due to the subtraction 
of pressure and energy data in equation (1). 
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Fig. 3. Comparison of shock-static values of the Gruneisen coefficient with theoretical estimates 
discussed in Ref. [3). 


